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Universal Dynamical Computation in
Multidimensional Excitable Lattices

Andrew Adamatzky1

Received

We study two- and three-dimensional lattices nodes of which take three states:
rest, eccited, and refractory, and deterministically update their states in discrete
time depending on the number of excited closest neighbors. Every resting node
is excited if exactly 2 of its 8 (in two-dimensiona l lattice) or exactly 4 of its 26
(in three-dimension al lattice) closest neighbors are excited. A node changes its
excited state into the refractory state and its refractory state into the rest state
unconditionally. We prove that such lattices are the minimal models of lattice
excitation that exhibit bounded movable patterns of self-localized excitation
(particle-like waves). The minimal, compact, stable, indivisible, and capable of
nonstop movement particle-like waves represent quanta of information. Exploring
all possible binary collisions between particle-like waves, we construct the
catalogue of the logical gates that are realized in the excitable lattices. The space
and time complexity of the logical operations is evaluated and the possible
realizations of the registers, counters, and reflectors are discussed. The place of
the excitable lattices in the hierarchy of computation universal models and their
high affinity to real-life analogues affirm that excitable lattices may be the minimal
models of real-like dynamical universal computation.

1. INTRODUCTION

Computational universality implies the ability to compute any logical
function. To validate the computation universality of some abstract or real

physical, chemical, or biological system we need to construct functionally

complete system of Boolean functions, e.g., ^ x, x Ù y & or ^ x, x Ú y & . Given

some physical, chemical, or biological system, to prove its computational

universality, we have to represent (i) quanta of information (e.g., True and
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False values of the Boolean variables), (ii) routes of information transmission,

and (iii) logical gates where quanta of information are processed in the states

of the given system.
The standard method of stationary computation (computation with sta-

tionary architectures) utilizes embedding of the entire architecture of the

Boolean circuit into the given system in such a manner that wires, gates,

etc., are presented in the stationary states of the system (namely in the

absorbed states of the elementary units) and do not change their position

with time [12, 49, 51, 56, 66].
The dynamical computation is an original nonstandard and widely

accepted method. It assumes that autonomous signals travel in space and

perform computation by colliding with other traveling signals. There are no

specially determined wires; however, we can use mirrors to specify trajectories

of the signal [45].

The billiard ball model [45] and the glider computation in the game of
Life [15] are basic models of the contemporary theory of dynamical computa-

tion, particularly in cellular-automata models of natural systems.

Fredkin and Toffoli [45] were probably the first to prove that there is

no need to keep the computer architecture stationary and unchanging: every-

thing can move, collide, and compute by colliding. The discovery of gliders
and glider guns in the game of Life led to the possibility of simulating

universal logical gates via collisions between gliders [15] and other self-

localized movable patterns [24, 25, 34].

Whereas physics-based universal computation has been evolving toward

the design of interaction gates with Toffoli±Fredkin ideology, a new direction

in natural computing emerged from the study of nonlinear homogeneous
chemical media. This is reaction-diffusion computing. The discovery of light-

sensitive modification of the Belousov±Zhabotinsky reaction by Kuhnert [54]

and its application to image processing [55] were the starting points for the

design of working prototypes of distributed chemical computers [64, 65, 75,

76, 79, 8].

All reaction-diffusion algorithms are deeply intuitive: the data are repre-
sented by the concentrations of reagents spatially distributed in chemical

solutions or films with immobilized reagents. The sites of the chemical space

where the data-reagents are initially applied generate concentration waves

that spread, collide with one another, and produce a precipitate or dissipative

structures of stationary concentrations of the reagents. The distribution of

precipitate represents the results of the computation. All chemical processors
with homogeneous computational space are highly specialized. They are

designed to solve only one problem, e.g., image enhancement or contouring

[64], approximation of a Voronoi diagram [79], or search for the exit out of

a labyrinth [75, 8].
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However, the recent results of Blittersdorf et al., [18], ToÂth and Showalter

[80], and Steinbock et al., [76] show that logical gates can be realized when

computational space is structured. The chemical waves travel inside the tubes
and interact one with another in the tube junctions. So, the space is highly

inhomogeneous. The wires are predetermined and there is little difference

between such chemical models and logical operations realized in the living

axons or dendrites.

Is it possible to make the two- and three-dimensional reaction-diffusion

processors dynamically computationally universal? To prove the answer is
yes, we use a reduced version of reaction-diffusion systems: excitable lattices.

We demonstrate that excitable lattices exhibit a wide range of the movable

self-localized patterns of excitation (particle-like waves) and that universal

logical gates are realized at the sites of collision between these mobile patterns.

Keeping in mind that our models of excitation are far from the disappointing

reality, we decided to play all possible scenarios of the collisions. That is,
we investigate almost all possible binary and ternary collisions of the particle-

like waves in two- and three-dimensional excitable lattices and compile a

catalog of the interaction gates that are realized as the result of the collisions.

Most of the gates are proved to be logically universal and so our simple

models of lattice excitation are universal computers. The complexity of the
models is analyzed and comparison with existing cellular-automata models

of universal computation is provided.

Various models of universal computation in automata networks are dis-

cussed in Section 2. The basic model of lattice excitation is defined in Section

3. Section 4 introduces and characterizes multidimensional particle-like

waves. The generators of the particle-like waves, or the so-called particle
guns, are investigated in Section 5. Section 6 presents a catalog of the

interaction gates. Possible ways to construct counters and registers are dis-

cussed in Section 7. In Section 8 we compare the complexity of universal

computing in the excitable lattice and the game of Life. Possible real-life

candidates for the role of dynamical universal computers are discussed in

Section 9. Potential techniques for the discovery of universal computers are
discussed in Section 10.

2. UNIVERSAL COMPUTATIONS IN AUTOMATA NETWORKS
AND MODELS OF NATURAL SYSTEMS

Generally speaking, a universal computer is a device that implements
computable recursive functions and composition rules, i.e., null function,

successor function, projection operation, function composition, primitive

recursion. Fisher [40] and Mazoyer [56, 66] proved that even a one-dimen-

sional cellular automaton makes arithmetic computations and simulates
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recursive functions. So, such a automaton is universal. However, the signals

that carry information and the proper cell states are separated in these models;

the static architecture of the computer is really embedded into the configura-
tions of the cellular automaton.

An entirely new field of particle models of computation was developed

by Steiglitz, Squier, et al., [62, 74, 70±73]. Their particle machines are one-

dimensional, but truly dynamical computing devices: the particles propagate

and collide, and implement computation as the result of collisions. In the

particle models the units of information are encoded in the vector states of
the particles.

An abstract machine is called universal (actually simulation universal)

if it simulates the univeral Turing machine. Thus, e.g., the cellular automaton

is universal if it simulates the Turing machine and any other cellular automaton

(see, e.g., ref. 59).

Finally, there is the commonsense notion that a universal computer is
one that can be programmed to perform any digital computation [14]. A

series of physical models have been considered as universal computers: hard-

sphere gas, lattice gas, systems of partial differential equations, and single

particles moving in the a room with plane and parabolic mirrors [14].

In the present paper we assume that a computing device is universal if
it computes any Boolean function (function of the algebra of logic) presented

in the form f : {0, 1}k ® {0, 1}.

From the basics of Boolean algebra we know that every Boolean function

can be represented in disjunctive normal form:

f (x1, . . . , xk) 5 Ú
( s 1, . . . , s k)

f ( s 1, . . . , s k) 5 1

x s
11 Ù ? ? ? x s

kk

The f (x1, . . . , xk) [ 0 is represented by f (x1, . . . , xk) [ x1 Ù x1.

Therefore every Boolean function is represented via negation, conjunction,

or disjunction. That is, e.g., the systems {x, x1 Ù x2, x1 Ú x2} and {x, x1 Ù
x2} are functionally complete.

2.1. Neural and Reaction-Diffusion Networks

Neural and reaction-diffusion networks (in their purely abstract form)

have been proven to be universal. The simulation universality of a neuron-

like network has been demonstrated by Siegelman and Sontag [69]: every
neuron of the network has a linear combination of inputs and a saturated

linear threshold function. Assuming that universality of the neural networks

is proved, Goles and Matamala [51] show that a three-state automata network

is universal because it simulates any neural network. The sandpile model

(which is discussed below) is a more realistic species of reaction-diffusion



Universal Dynamical Computation in Multidimensional Excitable Lattices 3073

models, so the proof of universality of the one-dimensional reaction-diffusion

medium can be accepted in general via the proof of universality of the

sandpile model [49].
The continuous and hybrid systems constitute another class of universal

computers. One of the first substantiated claims on the universality of partial

differential equations with continuous time was that of Omohundro [60],

who proved that any two-dimensional cellular automaton with (8 1 1)-cell

neighborhood is simulated by a system of ten coupled partial differential

equations. The cellular automaton in its turn simulates, a Turing machine.
Therefore, that system of differential equations is universal.

As a corollary to the simulation of discrete systems by continuous and

hybrid systems (which are obviously a superclass of the neural networks),

Branicky [21] showed that a Turing machine is simulated by ordinary differen-

tial equations in three-dimensional real-valued space. Elaborating the Korian-

Cosnard-Garzon idea [53] on the simulation of a universal Turing machine
by a two-dimensional piecewise linear iterated function, Orponen and Mata-

mala [61] confirmed that one- and two-dimensional gridlike networks of

coupled oscillators simulate a Turing machine, and therefore arrays of the

coupled oscillators are universal.

2.2. Sandpile Model

The sandpile model of Goles and Margenstern [49] is among the most

attractive models of universal computation. It originates from the physical

sandpile model [10], combinatorial games with discs and balls [9], and chip

firing games [50, 16]. The sandpile model configurationally simulates logical
gates and registers.

2.3. Billiard Ball Model

The billiard ball model, with its binary `̀ signals’’ traveling on the grid
and interacting with one another [45] is probably the most famous model

of universal physical computation. Created by Fredkin and Toffoli [45] in

the context of conservative logic, the model is based mainly on idealized

elastic collisions between balls and unmoveable reflectors. The balls of finite

diameter move with constant velocity along straight trajectories on a planar

grid. A bit of information is represented by the presence or absence of a ball
at a given time at a given site. The routes of the information flow are

represented by the trajectories of the balls (crossover is trivially prevented)

and routing is implemented by the orientations (initial configuration) of

the reflectors.
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The elementary interaction logical gate of the billiard ball model that

computes xy, xy, xy (we write xy for x Ù y) functions is shown in Fig. 1A,

with its ball representation Fig. 1B. From the elementary gates and the mirrors
(that reflect the balls) the switch and the so-called Fredkin (conservative)

gates are constructed. One practical application of the Fredkin gate is found

in magnetic-bubble logic and conservative logical circuits [24]. Also, Chau

and Wilczek [25] designed a Fredkin gate using a sequence of six 2-body

quantum gates. Some recent results related to the universality of the billiard

ball model in the sense of Margolus neighborhood are presented in ref. 34.

2.4. Game of Life

The game of Life is one of the first cellular-automata models proved

to be dynamically computation universal [15]. This is a two-dimensional

automaton with 8-cell neighborhood and binary cell state set. The Life rule
is attractively simple. Every cell in the 1-state does not change its state if it

has exactly two or three neighbors in the 1-state. The cell switches from 0-

state to 1-state when there are exactly two neighbors in the 1-state. The

self-localized oscillating translating patternsÐ gliders and spaceshipsÐ and

generators of the movable patternsÐ glider gunsÐ usually emerge in the

space-time evolution of the game of Life automaton that starts from the
random initial configuration. The gliders can be considered as the analogs

of balls, which represent, transmit, and process information. The gliders do

not collide elastically. Both gliders disappear as the result of a collision and

the interaction gate has not four, but two outputs, as in Fig. 2. Therefore,

the only xy and xy functions can be computed in single collision of two gliders.

The universality of the game of Life is proved in ref. 15 by the construc-
tion of universal logical functions via collisions of glider streams. If the

distances between neighboring gliders in a stream are fixed, then every glider

will represent 1, or Truth, and the absence of a glider 2 0, or False. If two

gliders collide with each other, they annihilate. The glider streams from the

glider gun can be considered as 1 constant. Therefore, a x gate is constructed

Fig. 1. Billiard ball interaction gate.
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Fig. 2. Glider interaction gate.

in the following way: a data stream x of gliders runs across a stream of

gliders generated by a glider gun. When a glider from the data stream collides

with a glider from the glider gun it annihiliates. If it does not meet a glider

from the glider gun it continues to move undisturbed. As a result of the

stream interaction, we receive the stream x of gliders and holes that represents
the result of the computation. Combining the glider streams from the glider

gun with the data streams x and y, we can produce x Ú y and xy streams.

2.5. Life without Death

Griffeath and Moore [48] designed a model that realizes interaction
logical gates in the collision and interaction of wormlike patterns, so-called

ladders, which grow in the evolution of two-dimensional cellular automaton

with 8-cell neighborhood and binary cell state set. Every cell of the automaton

takes the 0- or 1-state and updates its state by the following simple rule: A

0-state cell takes the 1-state if exactly three of its neighbors are in 1-states.
The 1-state is absorbing. The trajectories of the billiard balls are simulated

by quasi-one-dimensional ladders that grow in one of the four directions,

i.e., along the columns or rows of the cellular array. The ladders can be turned,

blocked, and delayed. Immortality is the only but significant disadvantage of

the model: the trajectories of the ladders cannot intersect each other.

3. THE MODEL OF AN EXCITABLE LATTICE

Every cell of the discrete lattice L takes three states: . (rest), 1 (excited),

and 2 (refractory), and changes its states deterministically in discrete time

depending on the states of its closest neighbors. Every cell x of L has 8-cell

neighborhood in a two-dimensional lattice and 26-cell neighborhood in a

three-dimensional lattice, i.e., a neighborhood of cell x includes all the cells
being at the distance 1 ( in L ` metric) from x and does not include the cell

x itself.

The rest cell becomes excited if exactly 2 (in the two-dimensional lattice)
or 4 (in the three-dimensional lattice) of its neighbors are excited and passes
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from the excited state to the refractory state and from the refractory state to
the rest state unconditionally, i.e., independently on the states of its neighbors.

The cellular-automata model M 1 of the lattice excitation is the tuple
^ L, Q, u, f & , where L is a two- or three-dimensional array of cells, Q is a

set of cell states, Q 5 {. , 1 , 2 }, u: Lk ® L is a neighborhood function,

which assigns k different cells of L to every cell of L, and f:Q 3 Qk ® Q
is a function of the cell state transitions.

Every cell x has neighborhood u(x) 5 (y1, . . . , yk) such that " y P u(x):

| x 2 y ) L `
5 1. The size of a neighborhood is k 5 8 cells in a two-dimensional

lattice and k 5 26 cells in a three-dimensional lattice. The cell x being at

state x t at time step t calculates its next state x t 1 1 in accordance with the

local transition function x t 1 1 5 f (x t, u(x) t). The transitions 1 ® 2 and 2
® . are unconditional. Therefore we have to define the only condition for

transition . ® 1 , i.e., the condition of the excitation. The rule has the

following form:

x t 1 1 5 5
1 x t 5 . and ) {y P u(x) : y t 5 1 } ) 5 u
2 x t 5 1
. otherwise

(1)

where u 5 2 (lin two dimensions) and u 5 4 (in three dimensions). The

values of u determine the name of the model version: the 2+-medium and

the 4+-medium [4±6].

Proposition 1. The model M 1 is simulated in the cellular automaton A
with binary cell states and memory of capacity 1.

The automaton A has a partially determined cell state transition function

x t 1 1 5 f (x t 2 1, x t, s(x) t), where s(x) t 5 ( y P u(x)y
t; it is not determined on the

set (1, 1, a) of arguments for any a. For other arguments we have f (0, 1, a)

5 0 and f (1, 0, a) 5 0, for any a; f (0, 0, u ) 5 1 and f (0, 0, a) 5 0 for

a Þ u . So, the states of the cells of M 1 are represented by the tuples of two first

arguments: the rest state corresponds to 00, the excited states is represented by
01, and the refractory state is represented by 10.

4. MINIMAL PARTICLE-LIKE WAVES

Let L be the infinite lattice and s t 5 {x P L ) x t P { 1 , 2 }}, i P N, be
the finite subset of cells being in 1 and 2 states such that " x P s t $ y P
s t : x Þ y and x P u(y) and y P u(x). Then s t is called a particle-like

wave if it is translated by the parallel application of the function f to the

cell neighborhoods.
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Let E 5 {0, . . . , k} be the set of all possible sums of excited elements

of u(x). The function f : Q 3 Qk ® Q belongs to the family J of the multiple

threshold excitations if it is determined by the rule

x t 1 1 5 5
1 x t 5 . and ) {y P u(x) : y t 5 1 } ) P Q
2 x t 5 1
. otherwise

(2)

where Q P 2E. The definition implies that the rest cell is excited if the sum

of its excited neighbors matches one of the elements of U . The family J
includes all other possible functions of the lattice excitation with unconditional

states transitions 2 ® . and 1 ® 2 .

Example 1. Let f be the function of the interval excitation defined by

the rule

x t 1 1 5 5
1 x t 5 . and G 1 # ) {y P u(x) : y t 5 1 } ) # G 2

2 x t 5 1
. otherwise

(3)

where G 1 # G 2 and G 1, G 2 P E. To prove f P J we show that Q 5 {a P
E ) G 1 # a # G 2}. Assuming that G 2 5 max E, we demonstrate that all
functions of conventional threshold excitations are elements of J [7].

The configuration of the cellular automaton is the mapping c: L ® Q.

Given the sequence c0 ® . . . ® cp of the configurations of M 1 , we say the

function f P J , determined by Q , is minimal in the family J if for any other

f8 P J determined by Q 8, we have (i) ) Q ) # ) Q 8 ) and (ii) min Q # min Q 8.
In words, f is minimal if its corresponding set Q has a minimal number

of elements and the minimal element among the elements of all other charac-

teristic sets of the elements of J . In terms of the interval excitations this

means that the cells have the only the interval of excitation, which is a

singleton and the least possible element of E.

Theorem 1. The rule (1) is the minimal rule of the excitation of two-

and three-dimensional excitable lattices with near neighbor interactions that

supports particle-like waves.

Proof. Let us consider the configurations of the particle-like waves. In

a two-dimensional lattice the minimal translating pattern, the so-called 2+-

particle [4, 5, 6], consists of two excited and two refractory states. It moves

along the coordinate axes. The configuration of the excited and refractory
states encodes the orientation of the velocity vector as follows: north ( 1

2
1
2 ),

south ( 2
1

2
1 ), west ( 1

1
2
2 ), east ( 2

2
1
1 ). To demonstrate nonstop movement we

consider how many excited neighbors are around the rest cells surrounding

the particle. Let us look at the 2+ particle moving north:
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1 2 2 1

1 1 1 1

1 2 2 1

0 0 0 0

In this scheme the states of excited and refractory cells are shown explicitly,

whereas every rest cell contains the number of excited neighbors. We see

that only two northern rest neighbors of the excited cells have two excited

neighbors and, therefore, they are excited at the next step of discrete time;

the currently excited cells become refractory and the pattern is shifted north.

In three-dimensional lattices the minimal particle-like waves, the so-
called 4+-particles, consist of 4 excited cell states and 4 refractory cell states.

Every 4+-particle can be imagined as the duplex of 2+-particles (moving in

parallel planes). The velocity vector of the 4+-particle is parallel to one of

the coordinate axes, perpendicular to the plane in which the block of 1 states

lies, and the orientation of the vector is encoded in the configuration of the
1 and 2 cells. Thus, e.g., the 4+-particle, the velocity vector of which is

collinear with y-axis, has the configuration

( 1
2

1
2 )(x,y,x) ( 1

2
1
2 )(x,y,z 1 1)

The rule (1) satisfies the condition (i) because Q is a singleton. So, we need

to prove condition (ii). In two-dimensional lattices u 5 2, therefore, the only
candidate to test is u 5 1. Let the rest cell be excited if exactly one neighbor

is excited. On infinite L any finite connected set s 0, ) s 0 ) $ u , of excited

cells causes unbounded growth of excitation because the rest cells nearest

to the extreme elements of the set have exactly one excited neighbor. Consider-

ing u 5 1, 2, 3 in three-dimensional case, we obtain similar results. n
More detailed considerations on the structure of minimal wave generators

can be found in ref. 7.

Remark 1. The rule (1) is minimal only among models with spatially
invariant cell state transition rules because some asymmetric neighborhoods

of less size can also give translating patterns [7].

The minimal particles (2+ and 4+-particles) move along the rows or

columns of the cell array.

Fortunately, there are also patterns that move along the diagonals of the

arrays. They are 3+-particles (in the two-dimensisonal lattice) and 6+-particles
(in the three-dimensional lattice). They consist of 3 1 -states and 3 2 -states,

and 6 1 -states and 6 2 -states, respectively. Any 3+-particle has 4 configura-

tions (particle states) that are changed step by step in the loop. The diagonal

movement is approximated by a series of ladder shifts (Fig. 3).
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Fig. 3. Encoding of the directions of movement in the states of the minimal particles: two-

dimensional latticeÐ 2+±medium.

The 6+-particle can be imagined as the duplex of the 3+-particles. The

6+-particle moves in the plane parallel to one of the coordinate planes and

only 2 of its 3 coordinates are changed during the movement.

Proposition 2. The 2+-, 3+-, 4+-, and 6+-particles are minimal indivisible

compact movable patterns.

Proof. The mobility has been already proved when we considered the

number of excited neighbors of the rest cells around the currently excited

states. If, in the evolution of the model, we remove one of the excited states
from any of the particles, the pattern disappears or is transformed into another

pattern (rather not minimal). This was demonstrated by straightforward pertur-

bations of the patterns [4]. The neighborhoods of the nonrest cells in the

particles overlap; therefore these patterns are compact. The 2+- and 4+-parti-

cles are minimal because the number of excited cells in these patterns is
equal to u as defined in (1). Any compact pattern of excitation that includes

less than u excited cells will be entirely rest after few steps of the evolution.

Using exhaustive search we prove that the 3+- and 6+-particles are the minimal

patterns that move along the diagonals of the lattice. An example of a 4+-

particle is shown in Fig. 4. n

Proposition 3. The velocity of 3+- and 6+-particles is four times less

than the velocity of 2+- and 4+-particles.

More generally we can say that the patterns moving along the columns

or rows of the lattice have unit velocity, whereas the velocity of the patterns
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Fig. 4. 4+±particle. Black spheres represent excited cells, light gray spheres are the refractory

cells; rest cells are not shown.

running along diagonals is equal to 1/4 because the diagonal movement is

approximated by ladder shifts along columns and rows [4].

Proposition 4. The minimal quantum of information in excitable lattices

occupies a 2 3 2-cell volume in two-dimensional lattices and a 2 3 2 3 2-

cell volume in three-dimensional lattices.

5. PARTICLE GUNS: GENERATORS OF PARTICLE-LIKE
WAVES

The constant 1 is realized by streams of particle-like waves. The streams
are semiinfinite and they are produced by so-called particle guns. A particle

gun is a finite compact pattern that periodically generates one or more types

of particles. There is still no rigorous technique for the design of particle

guns (however, identification algorithms [3] and integer programming [20]

may be quite useful) and we base most of our propositions on the results of

exhaustive search in a numerical experiments.

Proposition 5. There are no unmovable guns in 2+-medium.

This is because there are no unmovable patterns in 2+-medium at all

(see Proposition 17).

Proposition 6. The minimal particle gun in 2+-medium, the so-called

G2-gun, moves along one of the coordinate axes with unit velocity and has

size of 6 3 9 cells and a weight of 26 nonrest states. The gun generates the

2+-particle every fourth step of the evolution. The generated particles move
in the direction opposite to the direction of the gun motion.

The configuration of a cellular automaton with a G2-gun moving west

and emitting 2+-particles to the east is shown in Fig 5. The weight of the

gun is maximal just before it delivers a new particle. Because the period of
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Fig. 5. Two-dimensional movable gun G2.

generation is 4 time steps, the 2+-particles are at distance 8 cells from each

other. This determines the maximal frequency of the excitable computer.

In certain cases it may be extremely useful to have a gun that generates

particles in the direction perpendicular to the velocity vector of the gun. Two

minimal guns that generate particles in that manner are presented in Fig. 6

and 7. The first gun the G3-gun, gives birth to (2 1 1)+-particles (Fig. 6).
As we will see later, the (2 1 1)+-particle is transformed into the 2+-particle

via collision with another 2+-particle. The G3-gun has 18-nonrest state weight,

5 3 11-cell maximal size, and generate particles every fourth step of the

evolution. The generated particles are grouped into the particle front. The

distance between two particles in the front is 8 cells along the axes parallel
to the velocity vector and 4 cells along the other axis.

The third gun, the G 7
2-gun, generates simulateously 2+-particles and more

complex patterns (of 7 excited states) every eighth step of the evolution (Fig.

7). The velocity vectors of all generated patterns are perpendicular to the

velocity vectors of the gun. The 2+-particles and 7+-patterns move in oppo-

site directions.
When talking about a minimal gun we should emphasize that the G3-

gun actually has less size and weight then the G2-gun, though it does not

produce elementary particles directly, but generates pro-particles that need

additional collisions to be transformed into elementary particles. So we cannot

accept the G3-gun as minimal.

Fig. 6. Two-dimensional movable gun G3.
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Fig. 7. Two-dimensional movable gun G7
2.

Problem 1. Is it possible to generate a particle gun in a natural way,

that is, in the collision of several elementary, 2+- and 3+-, particles?

There is no certain answer for two-dimensional lattices. In a three-
dimensional lattice a stationary gun is generated via collision of two elemen-

tary particle-like waves.

Proposition 7. In the 4+-medium the minimal mobile gun has a weight

of 16 nonrest states, 4 3 4 3 3 cell volume, and generates 4+-particles every

second step of the evolution. The generated 4+-particles move in the direction

opposite to the velocity vector of the gun.

The gun is shown in Fig. 8. It moves along one of the coordinate axes.

It is very elegant and can be built from a 4+-particle by adding 4 additional
excited states and placing them at the angles of the quadruple of the refractory

states (Fig. 8, t). The new 4+-particles are launched at the back of the gun

and move in directions opposite to the gun velocity vector. The gun forms

an extremely dense stream of 4+-particles with only 2 empty cell distance

between the neighboring particles.

Proposition 8. In the 4+-medium the minimal stationary gun, the

G 4
2-gun, has 12 nonrest state weight, 4 3 4 3 3 cell volume, and generates

two 4+-particles every third step of the evolution.
The development of the G 7

2-gun is shown in Fig. 9. When generating

the particles the gun changes its state in a cycle of length 3. It subsequently

takes the following proper states: (i) an empty square with excited boundaries,

or 8 excited states (Fig. 9, t), (ii) a plate of 4 excited states surrounded by
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Fig. 8. Mobile gun in 4+±medium (three-dimensional excitable lattice). Coordinate axes are indicated

on the first image. The double arrow shows the direction of gun motion. Black spheres represent

excited cells, light gray spheres are the refractory cells; rest cells are not shown.

8 refractory states (Figure 9, t 1 1), and (iii) a plate of 4 refractory states

sandwiched between the plates of 4 excited states (Figure 9, t 1 2).

Proposition 9. A three-dimensional stationary gun, the G 4
2-gun, is gener-

ated as a result of frontal collision of two 6+-particles.

The scheme and the skeleton of the collision are shown in Fig. 10.

Parameters of the collision are described in the Appendix. It is remarkable

that slight relative shifts of the colliding 6+-particles change the orientation

of the G 4
2-gun by 90 8 .

Proposition 10. All guns are destroyable.

This is trivially proved by the collision of 2+- and 4+-particles with

particle guns. Collision is followed by short-range perturbation (dissipation
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Fig. 9. Stationary three-dimensional gun G4
2.

of energy), after which all patterns of excitation disappear. The following

important problem remains open.

Problem 2. Are there generators of 3+- and 6+-particles in the excit-

able lattices?

6. COLLISIONS AND INTERACTION GATES

Self-localized excitations, or particle like waves, represent the bits of
information (or unit impulses) and logical gates are realized when two or more

particles collide one with another. The logical operations are implemented at

the sites of collision when two or more particle-like waves interact with

one another. Therefore logical gates realized in excitable media are called

interaction gates. In general, the result of a collision is determined by the

types and phases of colliding particles and the angle of collision. To build
the structure of all interaction logical gates in excitable lattices we collided

the particles in all combinations in an entirely rest environment. Surprisingly,

we found that excitable lattices support a much wider range of interaction

gates than any oher automata model.
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Fig. 10. The scheme (A) and the skeleton (B) of the frontal collision of two 6+±particles that leads

to formation of the stationary G4
2-gun, which generates 4+±particles.

A typical interaction gate has two input wires (by wire we mean trajectory

of the particle-like wave) and at least two, but usually three, output wires.

Two output wires represent the trajectories of particles when they continue

their motion undisturbed and the third output wire represents the trajectory

of a new particle formed as the result of collision of two incoming particles.
To describe the interaction gates we use two symbols: n and , . The

n symbol indicates that the results of the collision appear in parallel on

different output wires/trajectories. The , shows that the resulting particles

appear exclusively on one of the outputs. Thus, e.g., the billiard ball gate

(Fig. 1) is represented as

^ x, y & ® x y , xy , (x y n xy).

The glider interaction gate (2) of the game of Life is described in the follow-

ing form:

^ x, y & ® x y , x y.

When specifying the product of the interaction gates we also indicate (in

brackets) which particle-like waves present the terms of the gates. The specifi-

cation is monotonous in the case of the billiard ball gate

^ ball, ball & ® ball , ball , (ball n ball)
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and the glider gate

^ glider, glider & ® glider , glider.

but becomes very interesting when excitable media are considered. The next

result deals with a two-dimensional excitable lattice.

Proposition 11. The following types of interaction gates are realized in

a 2+-medium:

g1(x, y) 5 xy , xy [ ^ 2+, 2+ & ® 2+ , 2+]
g2(x, y) 5 (xy n x y) , x y , y x [ ^ 2+, 2+ & ® (2+ n 2+) , 2+ , 2+]

g3(x, y) 5 xy , xy , xy [ ^ 2+, 2+ & ® 3+ , 2+ , 2+]

g4(x, y) 5 g3(x, y) [ ^ 2+, 3+ & ® 3+ , 2+ , 3+]

g5(x, y) 5 xy , xy , xy [ ^ 2+, 2+ & ® (2 1 1)+ , 2+ , 2+]

g5a(x, y) 5 xy n x y [ ^ (2 1 1)+, 2+ & ® 2+ n 3+]

g6(x, y) 5 xy , xy , x y [ ^ 3+, 2+ & ® 2+ , 2+ , 3+]
g7(x, y) 5 y n [x y , xy] [ ^ 3+, 2+ & ® 2+ n (3+ , 2+)]

Proof. A catalog of gates is shown in Fig. 11. The absolute orientation

of the wires reflects the orientation of velocity vectors of the particles

Fig. 11. The interaction gates realizable in a two-dimensional excitable latticeÐ 2+±medium.
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Fig. 12. Gate g1.

approaching the collision site and leaving the collision site. The vertical and
horizontal arrows represent trajectories of 2+-particles [or 2+-like particles

as, e.g., a (2 1 1)+-pattern], and diagonal arrows are the trajectories of the

3+-particles. When we show the evolution of the excitable lattice that realizes

one of the gates we assume x 5 1 and y 5 1, i.e., two particles approach

the collision site simultaneously.

The first gate, g1 is a typical glider gate (as in the game of Life). When
two 2+-particles collide (Fig. 12, t) they destroy each other (Fig. 12, t 1 4)

and disappear. The x y is computed as the result of such a collision.

Colliding 2+-particles frontally (Fig. 13, t) we realize x y in gate g2. The

2+-particles collide quasielastically and change directions of their motion as

the result of collision. The first two gates involve only 2+-particles. All other

gates use also 3+-particle as the outcome of the collision.
In the g3 gate a 3+-particle is formed when two 2+-particles come into

a front-by-side collision as specified in Fig. 14. The 3+-particle represents

the xy product of the logical operation. When a 2+-particle moving west

crashes into a 2+-particle moving south (Fig. 14, t) a 3+-particle is formed

and it moves southeast (Fig. 14, t 1 5).
The g4 gate is a very typical example of an excitable interaction gate

(Fig. 15). The x variable is represented by a 3+-particle moving southeast

when x 5 1 and the y variable is represented by a 2+-particle moving north

when y 5 1. When the particles collide (t 1 1) a new self-localized

excitationÐ 3+-particleÐ is formed (t 1 6). This particle moves northeast. If

y 5 0 and x 5 1, then the 2+-particle simply continues its motion and we
have 1 on the xy output trajectory. If x 5 0 and y 5 1, we register a 3+-

particle on the x y output trajectory.

The g5 gate is one of the most attractive. At first sight it is similar to

the g1 gate because we obtain x y and x y results from the same wires as in

the g1 gate (Fig. 11). It also computes the x y function. However, if x 5 1

and y 5 1, the product x y is represented by a (2 1 1)+-pattern (Fig. 16).

Fig. 13. Gate g2.
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Fig. 14. Gate g3.

This is the only gate where we allow representation of a variable value by

a nonelementary particle-wave. It is because the 2+- and (2 1 1)+-patterns

can be easily differentiated in the collision with another 2+-particle (Fig. 17).

Let p be an unknown pattern [either 2+- or (2 1 1)+-pattern] that represents

the result of a computation in the g5(1, y) gate. Then we compute g5a(p, 1).

If p is represented by a (2 1 1)+-pattern, then the southwest `wire’ of the
g5a gate gives a 3+-particle. If p is represented by a 2+-particle (i.e., x y result

of a g5 gate), then we have nothing on the southwest wire of the g5a gate.

The next two gates, g6 and g6a, are equivalent in almost all respects

(Figs. 18 and 19) except the orientations of the input wires: the x and y
variables are represented by 3+- and 2+-particles, the xy term is represented
by a 3+-particle, and the xy and x y terms by 2+-particles, respectively.

Gate g7 gives an example of the deflection of one particle by another

particle where the second one does not change its trajectory (Fig. 20). When

x 5 1 and y 5 1 in the g7 gate a 3+-particle moving southeast comes into

collision with 2+-particle moving west. As the result of the collision the 2+-

particle continues its journey undisturbed, but the 3+-particle is transformed
into a 2+-particle that runs east. n

The three remaining gates (Fig. 11), g8, g9, and g10, are actually equiva-

lent to one of the previous gates except for the relative orientation of the
trajectories of incoming particles.

Fig. 15. Gate g4.
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Fig. 16. Gate g5.

Proposition 12. All gates except g2, g5a, g7, and g9 do not alter data.

The data are assumed to be altered by the result of the computation

when at least one of the outcoming particles goes along the same trajectory
as one of the incoming particles. The data are altered in two different ways.

The g2 and g5a gates alter data weakly (Fig. 11) because the particle

representing x y goes on the trajectory of x only when x 5 1. The g7 and g9

gates alter data sufficiently because the particle representing x y goes along

the trajectory of the particle representing y when x 5 1 and y 5 1 (Fig. 11).

Proposition 13. The g2 gate is excitation conservative.
The gate is excitation conservative because (i) the number of the incom-

ing particles is equal to the number of outcoming particles, and (ii) the

numbers of overall excited states before and after collision (before and after

computation) are equal to each other (Fig. 13).

Proposition 14. The minimal x Ù y and x Ù y gates in the 2+-medium have
2 input and 3 output wires and (5 3 2) cell size.

Let g (g) be the size of a gate g, i.e., the maximum among the sizes of

the input and output particles, and sizes of the collision and perturbation

areas. Then we have following space complexities of the gates: g (g1) 5
(5 3 5), g (g2) 5 (4 3 2), g (g3) 5 (5 3 2), g (g4) 5 (4 3 6), g (g5) 5
(5 3 3), g (g5a) 5 (3 3 6), g (g6) 5 (4 3 7), g (g6a) 5 (7 3 4), g (g8) 5
(5 3 6), g (g9) 5 (7 3 3), and g (g10) 5 (4 3 7). The g2 gate has minimal

size. Unfortunately, it does alter inputs (Fig. 11). The g3 is slightly larger

than g2, but does not alter data. It covers a 10-cell area and computes both

x Ù y and x Ù y functions.

Reusability of the computing device is one of the advantages of excitable
lattice computations. To start a new computational process on the same lattice

we clean up all results of the previous computations. If the lattice has absorbed

boundaries, this is not a problem. As it was proved in ref. 7 for 2+-medium,

the evolution started at any random configuration of the excited and refractory

Fig. 17. Gate g5a.
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Fig. 18. Gate g6.

states of the lattice nodes is completed in the entirely-rest lattice. In the case
of periodic boundaries there is a possibility that several particle-like waves

will travel on this discrete torus along nonintersecting trajectories. Here we

can use the so-called erase collision (Fig. 21) to clean up the lattice. To form

the cleaner we collide a 2+-particle with a 3+-particle (Fig. 21, t, . . . , t 1
3). As the result of collision a movable growing pattern is formed (Fig. 21,

t 1 10, . . . , t 1 16). The pattern has two growth points. They move

Fig. 19. Gate g6a.
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Fig. 20. Gate g7.

perpendicular to each other. Therefore the pattern is stretched (Fig. 22). If

any particle collides into the pattern body the particle disappears. To kill the

cleaner we crash 2+-particles into the growth points of the cleaner.

Proposition 15. The following types of interaction gates are realized in

4+-medium:

h1(x, y) 5 x y , x y [ ^ 4+, 4+ & ® 4+ , 4+] or [ ^ 6+, 6+ & ® 6+ , 6+] or [ ^ 4+, 6+ &
® 4+ , 6+]

h2(x, y) 5 xy , xy , xy [ ^ 4+, 6+ & ® 4+ , 4+ , 4+]
h3(x, y) 5 xy , y [ ^ 4+, 6+ & ® 4+ , 6+]

h4(x, y) 5 (xy n xy) , xy , xy [ ^ 4+, 6+ & ® (4+ n 4+) , 4+ , 6+]

h5(x, y) 5 1 [ ^ 6+, 6+ ® G2
4]

h6(x, y, z) 5 (xy z n xy z n xy z n x yz n ) , xy z , x y z , xy z
[ ^ 6+, 6+, 6+ & ® (4+ n 4+ n 4+ n 4+) , 6+ , 6+ , 6+ , 6+]

The h1 and h2 gates are similar to the g1 and g10 gates of the 2+-

medium. The coordinates of excited and refractory cells before the collision

in the h2-gate are presented in the Appendix; an example of the collision is

shown in Fig. 23.

In the collision between 4+- and 6+-particles in the h3 gate a new 6+-

particle is generated. It moves along the same trajectory as the previous 6+-
particle when approaching the collision site (Fig. 24).

When two particles interact with each other in the h4 gate they give

birth to two 4+-particles. These new 4+-particles move perpendicularly to the

plane of collision. The skeleton of the collision is shown in Fig. 25; the
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Fig. 21. Erase collision.

Fig. 22. Architecture of cleaner.
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Fig. 23. h2±gate: collision of a 4+±particle with a 6+±particle; the 4+±particle is formed as

the result of collision.

coordinates of excited and refractory cells representing positions of 6+- and

4+-particles before collision are shown in the Appendix. The h5 collision is

discussed in Section 7 and the Appendix.

A quadruple of 4+-particles is formed when the ternary collision of 6+-

particles takes place in the h6-gate. The scheme and the skeleton of the
collision are shown in Fig. 26. The positions of colliding particles and com-

plete history of the collision can be found in the Appendix.

7. REFLECTORS, COUNTERS, AND REGISTERS

In the Fredkin±Toffoli model [45, 58] stationary mirrors are used to

deflect the trajectory of a signal, make a sideways shift, implement a delay,

or realize a crossover of two signals. In the cellular-automata models the

stationary mirrors are usually represented by stationary patterns of the nonrest

Fig. 24. h3 gate: collision of a 4+±particle with a 6+±particle with the formation of a 6+±particle.
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cell states [58]. In this section we also analyze unmovable self-localized

patterns (that is, patterns that do not change their size globally, do not translate

on the lattice, and do not generate other patterns) in excitable lattices and

examine possible ways to realize deflections of particle-like waves and to

construct counters and registers.

Proposition 16. If there is an unmovable pattern in an excitable lattice,

then it is an oscillator.

The transitions 1 ® 2 and 2 ® . are unconditional, therefore any

configuration s 1 of excited cells at time t transforms into a configuration of

refractory cells at time t 1 1 and comes to rest at t 1 2. Before the excited

cells of s 1 become refractory they excite some of the surrounding cells of

s 2, which, in turn, excite the third pool s 3 of cells. If the cells of s 1 lie in

the neighborhood of cells from s 3 they will be excited at time t 1 3.

Unfortunately, the following fact holds for two-dimensional lattices.

Proposition 17. There are no unmovable patterns in a 2+-medium.

Let the pattern exist. Then it has at least two excited cells and at least

two refractory cells. In any connected set of excited and refractory cells in

a two-dimensional lattice there are couples of neighboring excited cells that

have more than one rest neighbor. These rest neighbors will be excited and

they also have more than one rest neighbor. So, the diameter of the excited

set will grow. A more detailed treatment of the subject, investigating minimal

generators, is presented in ref. 7. The outcome of the proposition states that

there are no stationary reflectors nor stationary registers in two-dimensional

excitable lattices.

Proposition 18. The minimal unmovable pattern in a 4+-medium has 12

non-rest-state weight, 3 3 3 3 3 cell volume, and oscillates with period 3.

The pattern, the so-called blinker B, has three configurations, which are

changed in the loop c1 ® c2 ® c3 ® c1. In the [(x, y, z), (x, y, z 1 1), x, y,

z 1 2)]-slices the states of B are changed in the following manner:

Fig. 25. Skeleton of the collision in the h4 gate.
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c1 5 F 1 ? 1 ?
2 1 2
? 1 ? 2 1

? ? ?
2 ? 2
? ? ? 2 1

? 1 ?
2 1 2
? 1 ? 2 G

c2 5 F 1 ? 2 ?
? 2 ?
? 2 ? 2 1

1 1 1
? ? ?
1 1 1 2 1

? 2 ?
? 2 ?
? 2 ? 2 G

c3 5 F 1 ? ? ?
1 ? 1
? ? ? 2 1

2 2 2
1 ? 1
2 2 2 2 1

? ? ?
1 ? 1
? ? ? 2 G

The period of 3 time steps is the minimal possible period of the oscilla-

tion. It follows from the cell state transition rule: a cell excited at time step

Fig. 26. Scheme (A) and the skeleton (B) of the collision of three 6+±particles with the formation

of four 4+±particles in the h6±gate.
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t can be excited again only at time step not less than t 1 3 because it has a

refractory state at step t 1 1 and the cell returns to the rest state at step t 1 2.

Proposition 19. As a result of collision with the B blinker a 4+-particle

is destroyed. The B may be destroyed or not destroyed depending on the

phase differences of the patterns just before collision.

This finding is the result of an exhaustive search of all possible collisions

between 4+-particles and the B blinker. Arranging several copies of the blinker

on a lattice and specifying the distances between them, we can realize registra-
tion. We still do not know if it is possible to generate the B blinker in the

collision of 4+- or 6+-particles; therefore currently we are able to design the

read only registers in the 4+-medium. Another consequence of the previous

propositions claims the following:

Proposition 20. There are no unmovable reflectors in excitable lattices.
As we found in Section 6, every elementary particle may play the role

of a mobile reflector.

Proposition 21. In 2+-medium the mobile counter representing m digits

is a movable pattern of 2 1 m excited states. It has the size of 2(m 1 1) 3
(2 1 m) cells.

The counter representing 0 is a 2+-particle. To increment the value of

the counter we collide the 2+-particle into the counter pattern, e.g.,

1 ? 1 1 ? ? ?
? 2 2 ? 1 2
? ? ? ? 1 2 2

As the result of the collision a counter of value 1 is formed,

1
? 1 1 ? ? ?
? 2 2 1 ? ?
? ? ? 2 ? ?
? ? ? ? 1 ?
? ? ? ? 2 ? 2

Every next increment is realized via collision of a 2+-particle with the tail
of the counter pattern in the following manner:

1
? 1 1 ? ? ? ? ?
? 2 2 1 ? ? ? ?
? ? ? 2 ? ? ? ?
? ? ? ? 1 ? ? ?
? ? ? ? 2 ? 1 2
? ? ? ? ? ? 1 2 2

To decrement value of the counter we crash a 3+-particle into the end of the tail.
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8. EXCITABLE LATTICES AND GAMES OF LIFE:
COMPARATIVE STUDY

What place do excitable lattices take in the hierarchy of models of

universal computation? Here we compare our models with nonstandard com-

putationally universal machines.

The first candidate, Bank’s computer [12], has stationary architecture:

predetermined wires and gates are represented in combination of the non-

rest-cell states.

The Life without Death [48] model has no predetermined architecture

and simulates interaction gates of the billiard ball model quite explicitly.

However, all trajectories of the signals are represented in the non-rest-cell

states, which are absorbing states in the cell evolution. That is, the full history

of the computation in the Life without Death model can be extracted from

the final stationary configuration. The model is not reusable, which is a very

small, but still notable disadvantage.

The interpretation of the billiard ball model in a two-dimensional parti-

tion cellular automaton [58] seems to be slightly artificial. Actually, the 16

states which are used in the cellular-automata model are quite enough to

encode the motion of an abstract object in 8 directions (on an integer lattice)

and to adjust collisions and reflections in the conventional cellular-autom-

ata model.

The sandpile model [49] has at least three cell states and allows us to

perform computation using one-dimensional gliders moving on linear graphs.

A sandpile computer should have stationary quasi-one-dimensional architec-

ture. It is impossible to build nontrivial particle-like patterns on the lattice

in the two-dimensional sandpile model. The trivial patterns would be ana-

logues of the ladder-like pattern that grows in lattice fire models (i.e. the

refractory state is an absorbing state).

Therefore, the only candidate to compare with the ecitable lattice is the

game of Life model [47, 15 ]. Both the excitable lattice and game of Life

models exhibit bounded growth from a randomly chosen configuration and

represent binary signals by translating patterns, called gliders and particle-

like waves. The game of Life is obviously minimal in number of cell states.

Both models have exactly the same cell neighborhoods. The game of Life

is the unquestionable winner in terms of the complexity of unmovable patterns.

But it loses in all other parameters. Excitable lattices have smaller and lighter

self-localized movable patterns and stationary guns. The game of Life has

no mobile guns at all. Excitable lattices have them. The only gate realizable

in a single binary collision of gliders in the game of Life is x Ù y, whereas we

can compute both x Ù y and x Ù y in the single collision of two particle-like
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waves in excitable lattices. The exact parameters of the elementary objects

in these two models are shown in Table I.

Here we also notice that in three dimensions only the 4555, 5766, and
5655 rules exhibit gliders and bounded growth from random configuration

[13]. Bays [13] accentuates that gliders should occur naturally in evolution,

i.e., they hae to appear reasonably often. However, as he mentions, gliders

in the 5655 rule are extremely rare and glider guns have not been discovered.

In contrast, 4+- and 6+-particles are stable solutions in every numerical experi-

ment with excitable lattices. Moreover, the particle guns emerge in every
series of at most 100 experiments with a 4+-medium.

Remarkably, there are no generators of spaceships, i.e., particles moving

along coordinate axes, in the game of Life; in excitable media there are no

generators of 3+- and 6+-particles.

9. REAL-LIFE CANDIDATES

Nonlinear media that exhibit self-localized mobile patterns in their evolu-

tion are potential candidates for the role of universal dynamical computers.

Here we tackle a few of the models: breathers, solitons, light bullets, and a

couple of exotic findings.

9.1. Solitons

The one-dimensional cellular automata models of solitons have been

widely recognized since the papers by Park, Steiglitz, and Papatheodoru et

Table I. Elementary Parameters of the Game of Life and Excitable Latticesa

2D game of 3D game 2D excitable 3D excitable

Parameter Life of Life lattice lattice

Minimal stationary patterns (4, 4) (7, 8) No (12, 27)

Minimal mobile pattern

(moving along columns

or rows) (8, 16) (18, 40) (4, 4) (8, 8)

Minimal mobile pattern

(moving along

diagonals) (5, 9) No (6, 16) (16, 32)

Minimal stationary gun (45, 180, 30) No No (12, 48, 3)

Minimal mobile gun No No (26, 54, 4) (16, 48, 2)

One-collision logical gate x Ù y x Ù y x Ù y and x Ú y x Ù y and x Ú y

a Complexity of the particle-like waves and stationary patterns is written in the format (weight,

volume), where weight is the number of the non-rest-cells. Complexity of the particle guns

has the format (weight, volume, period of particle generation). Parameters of the three-

dimensional game of Life model were evaluated for the 5655 rule [13].
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al. [62, 74, 63]. Several classes of (ir)reversible cellular automata were

characterized by soliton-like patterns [2, 46]. One particular class of soliton

automata on chemical graphs was invented and carefully investigated by
Dassow and Jurgensen [29, 30]. Recent results on soliton automata include

transformation of the discrete soliton equations into binary cellular automata

[77, 19] and construction of integrable cellular automaton with an N-soliton

solution [78]. Unfortunately, solitons pass through each other in collisions

(even on discrete lattices) (see, e.g., ref. 35), which significantly complicates

the possible realizations of the interaction gates. In this case the only usable
solution refers to particle machines and measures of information transfer in

soliton collisions [52].

9.2. Light Bullets

Still being considered widely as three-dimensional solitons, light bullets
never survive collision without loss of energy [17, 36]. Therefore they are

quite suitable for interaction gates. The results of numerical simulations of

three-dimensional generalized nonlinear SchroÈ dinger equations in a model

with alternative refractive index demonstrate the propagation of the stable

light bullets with soliton-like behavior [36, 37].

There are several computationally useful outcomes of bullet binary
collisions [38]: (1) light bullets survive collision, (2) two bullets fuse into a

stationary wave, (3) bullets pass through each other, but a third stationary

wave is formed, and (4) bullets rotate around one another and change their

outcoming trajectories.

Finding 1. The g2 gate is realized in light bullet interactions. This
follows from the results of the simulation of light bullets [38]. In the g2 gate

the input trajectories of x and y variables are coincident with the output

trajectories of xy and x y terms, respectively. The value of xy can be registered

from two different outward trajectories (Fig. 13). An example of the g2 gate

is given by spiraling light bullets [38]. When two light bullets move toward
one another and collide side by side with a certain offset they rotate around

one another without capture or fusion, and later escape the interaction zone

with transverse velocities [38].

Let l + be a moving light bullet and l 0 be a stationary solution (nonmoving

bullet). Then two following interaction gates are realized in the light bullet

collision.

Finding 2. h1(x, y) 5 x y , x y , (x y D x y D xy) [ ^ l +, l + & ® l + , l + ,
( l + D l 0 D l +)]. This is the situation of fission [38]: the bullets move toward

each other, pass through each other, and continue their motion, but a third

stationary wave is also formed. It stays at the site of collision. There are two
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waves before the collision and three waves after it. The stationary wave

represents xy.

Finding 3. h2(x, y) 5 x y , xy , x y [ ^ l +, l + & ® l + , l 0 , l +]. The soliton
fusion is the keystone feature of the gate [38]. If the velocities of the bullets

are below a certain threshold, the collided bullets do not overcome the binding

forces and fuse into a single stationary soliton.

The formation of a stable stationary soliton may be used to build a

counter in a light bullet universal computer. Namely, it allows us to organize
the write operation. To read from the counter we should crash a light bullet into

the stationary soliton. Unfortunately we do not know the possible outcomes of

such collisions. Applying our experience with breathers, we can propose that

depending on the velocity of the moving bullet and the degree of offset in

the collision, there are several possible products of such a collision: (1)

reflection of the moving bullet, (2) the setting of a previously stationary
soliton into motion, or (3) the disappearance of the moving bullet.

9.3. Breathers

As defined in ref. 42, discrete breathers are the time-periodic, spatially

localized solutions of equations of motion for classical degrees of freedom
interacting on a lattice. The breather is a multisolition in the sense of the

inverse scattering transformations [22, 23]. Flach et al. [41] obtained reliable

numerical solution of discrete breathers in three-dimensional lattices and

predicted a positive energy threshold for real-life three-dimensional lattices,

e.g., dynamics of atoms in crystals. They demonstrated that breathers are

generated on a lattice if the coupling is weak enough. Breather solutions
have been calculated for conjugated polymers, polyacetelene, ionic crystals,

and electric lattices; they can also be generated optically [42]. Actually, the

mechanism of discreteness-induced energy localization works in a large vari-

ety of physical lattice systems [35]. Thus, e.g., considering a Hamiltonian

with two variables describing transverse displacement of two bases belonging

to the base pairs in the DNA molecule under different values of coupling
constants between two nucleotides along the same strand, Forinash et al. [43,

44] showed that intrinsic local modes can be accidently formed due to the

localization of thermal fluctuations and one of the mechanisms of their growth

is the exchange of energy.

Many results have been obtained on effects of internal degrees of freedom

on the mobility properties of localized excitations on nonlinear lattices [42].
Thus interactions between breathers and impurity modes may lead to the

fusion of two breathers and the generation of a larger excitation [43, 44]. In

the presence of an external potential, a discrete breather can be broken up

into two spatially separate, coherent structures with individual motions [22,
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23]. Finally, perturbation of the pinning mode in the anticontinuous limit

gives us a method for constructing moving breathers with minimum shape

alteration [26]. Unfortunately, there is still no rigorous proof of their motility
[41, 42]. However, moving breathers with long lifetime can be found in

numerical experiments [26, 28]. Thus Chen and Aubry [26] demonstrate that

a breather moves as a classical particle in the presence of an appropriate

perturbation.

When two breathers collide with each other, a new pattern is formed.

This new pattern remains localized or generates two new breathers, depending
on the perturbations and phase differences [26]. Bang and Peyrard [11] and

Forinash et al. [43, 44] also report the survival of breathers after collisions

and their energy exchange depending on phase differences. Thus, we have

the following properties of breather collisions [43, 44, 35]:

1. The result of collision depends on the relative phases of breathers
when they collide.

2. The energy exchange between two collided breathers is proportional

to the difference of their amplitudes.

3. A large breather increases its energy as the result of collision; when

two breathers collide with each other, only the breather with large

amplitude remains recognizable, however, it loses some energy; if
the amplitude of the larger breather increases, it means it collects

some energy from the thermal fluctuations.

4. The larger breather is often set into motion by the collision.

5. Multiple collisions can prevent a weakly unstable breather from

decaying.

6. If a breather grows in amplitude, the minimum energy barrier
increases and this breather will be trapped by discreteness.

7. Local defects on the lattice, e.g., regions with different coupling

constants, may cause breather reflection, temporary trapping, or

even speedup, depending on the parameters.

Finding 4. The g2 and h2 gates are realized in breather interactions. The

breathers may survive collision or generate a new localized excitation, which

in turn, forms two new breathers [26, 11, 43, 44]. Therefore the gate g2 is

realizable. In ref. 26 it is found that the new pattern formed in the collision

of two breathers can remain localized. It gives us an opportunity to construct

an h2 gate.

9.4. Exotic species

The members of this family are moderately investigated and no published

results on the outcomes of real or numerically simulated interactions of
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these species are known. The fluctuons, which are chains of short-lived pair

creation-annihilation fermions [27], and informions, which arise from the

self-interference of diffusional processes and are massless quanta of informa-
tion [39], are abstract phenomena. So-called worms, or two-dimensional

movable localizations observed in experiments with nematic liquid crystals,

belong to the real physical world [33, 31, 32].

Liquid crystals have axial anisotropy (let it be the x-axis). There are

four directions along which localized waves propagate [67]. A worm moves

along the x-axis if not perturbed [67] and has a very distinctive shape. In the
x-axis it rises steeply to its maximum at one end (head) and then decays

gradually to another end (tail). The worm is narrow along the y-axis. The

widths of the worms are more or less equal, whereas their lengths can vary

significantly from exemplar to exemplar. No information about collisions

between the worms is available. Fortunately, in some conditions the worm

starts to move along the y-axis as well. It may be possible to turn the head
of a worm during the motion. If so, worms can change their direction of

movement as the result of collision. To make an analogy between worms in

nematic crystals and ladders in the Life without Death model [48] we also

note that worms usually grow, i.e., they become longer and longer in the

process of evolution [67].

10. HOW TO SEARCH FOR DYNAMICAL COMPUTATION
UNIVERSAL MODELS

There are several hints that allow us to detect the appropriate candidates

in the real world. Thus, for discrete breathers we know at least two criteria
that can be used in the experimental search: energy threshold and scattering

of planar waves by breathers [42]. Viability of the first criterion is proved

in numerical experiments with cellular automata models of excitable media

[7]: self-localized excitation in the lattice appears in evolution when every cell

of the lattice has subcritical threshold of excitation; increasing the threshold of

the cell excitation leads the system from spatial particle-like wave solutions
through quasi-chaotic regimes to regimes with unidirectional and spiral waves

[7]. Another confirmation of the `subcritical threshold’ is presented in ref.

44: in one-component systems brathers exist only below a critical coupling.

In investigations of spatially localized excitations in a lattice of coupled

oscillators it was found that breather-like patterns are more typical for small

coupling between oscillators, whereas large coupling leads to the globally
chaotic state [1].

Jakubowski, Steiglitz, and Squier [52] offer a realistic guide for searching

for physics-based computation universality. A possible computationally uni-

versal system should satisfy the following antagonistic requirements: (i) self-
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localized waves must preserve their integrity after a sequence of collisions

and (ii) self-localized waves must lose a negligible amount of energy through

radiation [52]. Based on the results of numerical experiments with the cubic
nonlinear ShroÈ dinger equations Jakubowsky et al. [52] show that even simple

measures of the radiation may be very suitable in practical evaluations of

the usefulness of wave collisions. Following their results we can indicate

possible candidates: Kerr materials, media with laser beam propagation,

spatiotemporal photoreactive optical solitions, and optical solitons in some

kinds of atomic crystals [52].
In the abstract cellular-automata models (without any realistic con-

straints) we can simply build an automaton with the required behavior. In

this case we can use genetic algorithms (see, e.g., ref. 57), sculpture the basin

attraction fields [81], reconstruct the local transition rules from given global

configurations [3], and generate predetermined patterns using integer pro-

gramming techniques [20].

Problem 3. Let A be the d-dimensional, 3-state, closest-neighborhood

cellular automata model of lattice excitation, the cells of which update their
states by the rule

x t 1 1 5 5
1 x t 5 . and ) {y P u(x) : y t 5 1 } ) 5 u
2 x t 5 1
. otherwise

(2)

Is it true for any d . 0 that the A is universal when u 5 2d 2 1.

This criterion of universality holds for d 5 2, 3, as demonstrated in the

present paper. It is also true for d 5 1: we can use a one-dimensional lattice

to realize the x Ù y gate if we launch the waves of the excitation on the tops

of the lattice. For d . 3 the answer is still uncertain.

APPENDIX

Here we present explicit parameters of the elementary particles just a

few steps before the collision. Assuming an entirely-rest three-dimensional

lattice, we describe every collision by the sets C + and C 2 of the coordinates

of cells being in rest ( 1 ) and refractory ( 2 ) states, respectively. The coordi-

nates are represented relative to the (0, 0, 0) coordinate center placed in the

(n/2, n/2, n/2) cell of the three-dimensional lattice.
The frontal collision of two 6+-particles with the formation of station-

ary gun:

C + 5 {(12, 10, 0), (12, 11, 0), (10, 12, 0), (12, 10, 1), (12, 11, 1), (10,

12, 1), (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1,), (2, 2 1, 0), (2, 2 1, 1)}



3104 Adamatzky

C 2 5 {(11, 11, 0), (13, 11, 0), (11, 13, 0), (11, 11, 1), (13, 11, 1), (11,

13, 1), ( 2 1, 0, 0), ( 2 1, 0, 1), (1, 0, 0), (1, 0, 1), (1, 2 2, 0), (1, 2 2, 1)}

The coordinates of 4+- and 6+-particles in the h2 gate:

C + 5 (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (2, 2 1, 0), (2, 2 1, 1), (0,

2 9, 0), (1, 2 9, 0), (0, 2 9, 1), (1, 2 9, 1)

C 2 5 ( 2 1, 0, 0), ( 2 1, 0, 1), (1, 0, 0), (1, 0, 1), (1, 2 2, 0), (1, 2 2, 1),

(0, 2 10, 0), (1, 2 10, 0), (0, 10, 1), (1, 2 10, 1)

Fig. 27. Collision of three 6+±particles with the formation of four 4+±particles in the h6±gate.
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The coordinates of 4+- and 6+-particles in the h4 gate:

C + 5 (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (2, 2 1, 0), (2, 2 1, 1), (0,

2 5, 0), (1, 2 5, 0), (0, 2 5, 1), (1, 2 5, 1)
C 2 5 ( 2 1, 0, 0), ( 2 1, 0, 1), (1, 0, 0), (1, 0, 1), (1, 2 2, 0), (1, 2 2, 1),

(0, 2 6, 0), (1, 2 6, 0), (0, 2 6, 1), (1, 2 6, 1)

The coordinate of three 6+-particles colliding in h6-gates (the full history

of the collision is shown in Fig. 27):

C + 5 (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (2, 2 1, 0), (2, 2 1, 1), (1,

5, 0), (1, 6, 0), (3, 7, 0), (1, 5, 1), (1, 6, 1), (3, 7, 1), (4, 1, 0), (4, 2, 0), (2,

3, 0), (4, 1, 1), (4, 2, 1), (2, 3, 1)

C 2 5 ( 2 1, 0, 0), ( 2 1, 0, 1), (1, 0, 0), (1, 0, 1), (1, 2 2, 0), (1, 2 2, 1),
(0, 6, 0), (2, 6, 0), (2, 8, 0), (0, 6, 1), (2, 6, 1), (2, 8, 1), (3, 2, 0), (5, 2, 0),

(3, 4, 0), (3, 2, 0), (5, 2, 1), (3, 4, 1)
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